my_series = Series(range(10), index=range(1920, 2020, 10))
print('My series:')
print(my_series)
print()
print('My series for 1990:')
print(my_series[1990])
print()
Output:
My series:
1920 0
1930 1
1940 2
1950 3
1960 4
1970 5
1980 6
1990 7
2000 8
2010 9
dtype: int64
My series for 1990:
7
another_series = Series(range(5), index=['a', 'b', 'b', 'c', 'd'])
print('Another series, but with duplicated index:')
print(another_series)
print()
print('Another series accessing duplicated index:')
print(another_series['b'])
Output:
Another series, but with duplicated index:
a 0
b 1
b 2
c 3
d 4
dtype: int64
Another series accessing duplicated index:
b 1
b 2
dtype: int64
series_a = Series(range(5))
series_b = Series(range(5,10))
print(series_a*series_b)
Output:
0 0
1 6
2 14
3 24
4 36
dtype: int64
NaN
(not a number).series_c = Series(range(7))
print(series_a + series_c)
Output:
0 0.0
1 2.0
2 4.0
3 6.0
4 8.0
5 NaN
6 NaN
dtype: float64
NaN
(not a number).series_d = Series(range(5), index=range(10,60,10))
series_e = Series(range(7), index=range(30,100,10))
print(series_d + series_e)
Output:
10 NaN
20 NaN
30 2.0
40 4.0
50 6.0
60 NaN
70 NaN
80 NaN
90 NaN
dtype: float64
.
data = {'city': ['Paris', 'Paris', 'Paris', 'Paris',
'London', 'London', 'London', 'London',
'Rome', 'Rome', 'Rome', 'Rome'],
'year': [2001, 2008, 2009, 2010,
2001, 2006, 2011, 2015,
2001, 2006, 2009, 2012],
'pop': [2.148, 2.211, 2.234, 2.244,
7.322, 7.657, 8.174, 8.615,
2.547, 2.627, 2.734, 2.627]}
df = DataFrame(data)
Output: (no output)
print(df[df['year'] == 2001])
Output:
city year pop
0 Paris 2001 2.148
4 London 2001 7.322
8 Rome 2001 2.547
print(df[df['pop'] < 2.6].city)
Output:
0 Paris
1 Paris
2 Paris
3 Paris
8 Rome
Name: city, dtype: object
.